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a  b  s  t  r  a  c  t

The  concept  of  evaluating  multiple  alternative  models  to  determine  ecological  response  form  is over
a  century  old  and  is  ever  more  relevant  as  modern  computing  power  allows  ever more  complicated
models  to be  routinely  used  but  often  without  a reasonable  model  verification  process,  particularly  in
fields  where  the  ecological  conceptual  model  is  still developing.  The  emphasis  for  developing  a statis-
tical  model  is  to test  the  validity  of  the  hypothesis  represented  by the  model.  We  present  a framework
of  model  identification  and  evaluation  that  includes  exploratory  data  analysis  and  model  diagnostics
and  evaluation.  This  framework  emphasizes  the  importance  of evaluating  multiple  alternative  models
when  evaluating  the  validity  of  the model.  This  process  is illustrated  by using  a  model-building  problem
for  quantifying  the  stream  ecological  response  to urbanization  using  a data  set  from  a large  ecological
study  designed  to understand  how  stream  ecosystems  respond  to urbanization.  The  paper  focuses  on the
question  of  whether  a threshold  model  is  appropriate,  and  demonstrates  the  importance  of  evaluating
multiple  alternative  models  in  the  detection  of  ecological  thresholds,  and  illustrates  how  choosing  an
inappropriate  model  can lead  to erroneous  conclusion  regarding  the  existence  of  thresholds.

© 2011  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Statistics is a tool for inductive reasoning, and the emphasis of
statistical modeling is on the discovery of the underlying causal
relation that resulted in the observed data. A typical statistical mod-
eling problem, however, is solved using a hypothetical deductive
reasoning process in three steps: (1) model formulation – defining
the probabilistic distribution of the response variable and char-
acterizing the distribution by modeling the mean variable as a
function of one or more predictor variables, (2) parameter estima-
tion – estimating model parameters using available data, and (3)
model interpretation – examining whether the fitted model can
be interpreted using subject matter knowledge and justified based
on the goodness-of-fit. These three steps correspond to the three
tasks that Fisher defined for addressing statistical modeling prob-
lems (Fisher, 1922). The first step poses the hypothesis of the study
and the subsequent steps test the hypothesis. Model formulation
requires the interaction between ecological and statistical knowl-
edge. Because the chosen model is assumed to be the true model,
the parameter estimation process always leads to the optimal fit of
the chosen model to the data. Consequently, assessing the validity
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Avenue,  Suite G-03, Raleigh, NC 27612. Tel.: +1 919 239 8906.
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(T.F.  Cuffney).

of the model based solely on a model’s fit can be ambiguous. Ambi-
guity can be reduced by proposing multiple models as competing
alternatives. Comparison of these multiple alternative models can
expose the weakness of models that would otherwise be masked by
focusing only on the optimal model fit of a single model. This pro-
cess is consistent with the multiple alternative working hypotheses
approach recommended by Chamberlin (1890) when explaining
new phenomena. This paper illustrates the importance of the mul-
tiple alternatives in ecological data analysis and modeling through
the process of identifying the appropriate model form for describ-
ing the response of stream ecosystems to urbanization, with a focus
on identifying a threshold response.

Although the theoretical value of the ecological threshold
concept is still a topic of debate, its practical value in environmen-
tal management is attractive especially to managers of natural
resources. As defined by Groffman et al. (2006), “an ecological
threshold is the point at which there is an abrupt change in
ecosystem quality, property or phenomenon, or where small
changes in an environmental driver produce large responses in the
ecosystem.” Because of the complicated nonlinear dynamics of a
threshold change and the multiple factors that can affect ecosys-
tems, the detection and quantification of ecological thresholds is
challenging. The question of detecting a threshold response is cen-
tered on determining whether or not a threshold exists. This can be
addressed either through ecological theories or through empirical
evidence in the form of statistical data analysis and modeling. This
paper focuses on the process of assembling empirical evidence

1470-160X/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
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for deciding the existence of a threshold. A statistical definition of
ecological threshold is proposed (Section 2.1) and used to discuss
general principles of model identification as applied to a threshold
problem. Data from the US Geological Survey’s (USGS) National
Water Quality Assessment (NAWQA) program is used to illustrate
the process of model selection and evaluation. These data were
collected to study the effects of urbanization on stream ecosystems
in nine metropolitan areas across the conterminous United States.

2.  Methods

A  model identification process is problem-specific. In this sec-
tion, we present a class of simple threshold models and discuss a
potential model diagnostic process.

2.1. Statistical definition of a threshold problem

When presenting a statistical model (e.g., a linear regression
model), we often use the familiar form of the mathematical equa-
tion:

y = ˇ0 + ˇ1x + ε, (1)

where  y is the response variable, x is the predictor variable, and ˇ0,
and ˇ1 are model coefficients. The error term ε is assumed to fol-
low a normal distribution with mean 0 and a constant variance, or
ε ∼ N(0, �2). This equation is equivalent to a normality assumption
of the response variable: y ∼ N(ˇ0 + ˇ1x, �2). In general, a statistical
model can be expressed as a probabilistic distribution about the
response variable of interest (y) and the distribution is character-
ized by a parameter vector �. For example, in the linear regression
model of Eq. (1), the distribution of the response is assumed to be
normal, with the mean modeled by a linear function of the pre-
dictor (or environmental stressor) x: � = ˇ0 + ˇ1x. For this problem,
� = {ˇ0, ˇ1, �2}. A general notation is y ∼ �(�, x) where � represent
a generic distribution function. A statistical threshold exists when
the distribution parameters change as the environmental stressor
crosses a specific value (�):

y∼
{

�(�1, x) if x < �

�(�2, x) if x ≥ �
(2)

where  � is a probability distribution function parameterized by �
and environmental predictor variable x. Most (if not all) existing
threshold models in the literature can be summarized in terms of
Eq. (2). Quantitative options for estimating the threshold lie in the
selection of the response variable distribution (�) and the deter-
mination of the dependency of the mean variable on one or more
predictor variables (x). Different distributions often require very
different computational methods, leading to numerous models in
the literature. Consequently, when selecting a model, it is important
to know the assumptions and conditions of the problem at hand.
Both Bayesian and classical approaches can be used for parameter
estimation. Model parameter estimation and model diagnostics for
the class of linear threshold models, where the response variable
y is assumed to have a normal distribution and the normal distri-
bution mean is modeled by a linear function of the predictor, are
discussed in the online supplementary materials. The linear class of
threshold models includes the simple linear regression model, the
piecewise linear (or the hockey stick) model, and the step function
model as special cases.

2.2.  The generalized linear threshold models

A frequently used benthic macroinvertebrate community indi-
cator of stream ecosystem condition is EPT taxa richness (EPTr),

which  is the number of mayfly (Ephemeroptera), stonefly (Ple-
coptera), and caddisfly (Trichoptera) taxa in a sample. In the United
States, EPTr is used by states (NCDE, 2006) and Federal agencies
(Barbour et al., 1999) as a bio-indicator for evaluating water quality
conditions. Because EPTr is a count variable, the Poisson distribu-
tion is often used to approximate its distribution:

y ∼ Pois(�)

log(�)  = ˇ0 + ˇ1x + 	
(3)

The  error term 	 ∼ N(0, �2) is used to account for possible overdis-
persion. Based on the definition of Eq. (2), a threshold exists if model
coefficients ˇ0, ˇ1 change along the gradient of predictor x. As in
the linear class of threshold model, the Poisson threshold model
can have three specific forms:

• The step function model

log(�)  =
{

ˇ0 + 	1 if x < �

ˇ0 + ı + 	2 if x ≥ �
(4)

• The  piecewise linear (or hockey stick) model:

log(�) = ˇ0 + (ˇ1 + ıI(x − �))(x − �) + 	 (5)

where I(a) is a unit step function (I(a) = 0 when a < 0 and I(a) = 1
when  a ≥ 0), also known as the indicator function.

• The  general model

log(�)  =
{

ˇ0 + ˇ1x + 	1 if x < �

(ˇ0 + ı0) + (ˇ1 + ı1)x + 	2 if x ≥ �
(6)

The  first question to address in the analysis is whether a thresh-
old response is appropriate from an ecological perspective. If the
answer is affirmative, the follow-up question is how to specify the
model form. Selecting the correct model form is critical because a
wrong model is likely to result in a threshold that is meaningless. If
the underlying relationship is nonlinear, proper transformation of
the predictor variable is necessary for the linear model to be useful.

2.3. Considerations in model evaluation

In the course of the investigation, a threshold response was
initially hypothesized before data analysis. The study was, hence,
designed to uncover the proper model form for the threshold
response (Eqs. (4), (5), or (6)). A generalized linear model (with-
out a change point) was also included as a contrast to the threshold
response models.

Threshold analyses were conducted by fitting all three alter-
native models (general, hockey stick, and step) to the same data,
and comparing the resulting threshold distributions (see online
supplementary materials). The estimated threshold distributions
are often useful for determining whether the model provides evi-
dence for or against the existence of a threshold. Furthermore,
comparison of model predictions with the data can be used to val-
idate the model by determining if the predictions are consistent
with the data. Comparisons of the estimated threshold distribu-
tions and model prediction form the basis for model selection and
refinement. Some forms of the general model may be ecologically
unrealistic, but the inclusion of the general model provides a math-
ematical check for the other two  models. The step function and
hockey stick models are special cases of the general model, if one
of them fits the data well, the general model should also fit the data
well with a similar change point estimate. If one of the two spe-
cial case models fits the data well, while the general model does
not or yields a different change point estimate, we have reasons to
re-evaluate the model.
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Fig. 1. Scatter plots of EPTr versus % impervious surface.

An unsettling feature of the step function model is that the
model will “detect” a change point whether one exists or not,
as long as the underlying function is monotonic. This problem
can be partially addressed by applying a transformation of the
predictor and/or the response variable. If the underlying relation
can be approximated by the step function, a transformation of the
predictor and/or the response variable will not affect the estimated
change point. Otherwise, transforming the predictor may  result
in a different change point. As a result, transforming the predictor
and/or the response variable should always be considered when
the step function model is used. In general, we transform the
predictor so that the transformed predictor values are distributed
more less symmetric to avoid potential leverage data points.
In this study, the predictor is a fraction variable (% impervious
surface), which is often transformed using the logit function (the
log ratio of % impervious surface over % pervious surface). The

logit  transformation is preferred over the other commonly used
transformation (i.e., square root of arcsine) because the logit
transformation can be easily interpreted. Although transforming
the predictor cannot be used as a definite test for the validity of the
step function, the use of transformation will likely provide useful
information for model selection.

2.4. Computation

Parameters of the three threshold models can be estimated
using classical statistics methods such as the maximum likelihood
estimator. The R package segmented (Muggeo, 2003) or the hockey
stick model described in Qian (2010) can be used for the piecewise
linear model. The step function model can be analyzed using the
two statistical methods described in Qian et al. (2003). However, to
facilitate model comparisons, a consistent Bayesian computational

Table 1
Estimated change points (posterior modes) (% impervious surface).

Models ATL BIR BOS DEN DFW MGB  POR RAL SLC

Without logit transforming the predictor
Step 6.35 9.11 3.59 1.93 37.83 1.38 2.48 5.8 16.84

Hockey 37.83 0.28 0.28 1.38 43.9 1.93 4.69 42.24 42.8
General  0.83 41.69 35.62 1.93 43.35 2.48 28.99 2.48 17.39
With  logit transforming the predictor

Step 6.35 9.11 3.58 1.92 0.26 1.37 2.48 5.24 16.84
Hockey 0.82 0.82 1.37 1.92 0.26 1.92 6.35 0.26 0.26
General  0.82 0.82 26.23 1.92 0.26 2.48 28.99 0.82 16.84
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Fig. 2. Estimated threshold distributions from 9 metropolitan areas using 3 change point models: step function (step), hockey stick (hockey), and general (general).

method was used. This method used Markov chain Monte Carlo
(MCMC) simulation to estimate model parameters. Details of the
computational method are presented in the online supplementary
materials.

3. Data

Data used in this paper were collected as part of the USGS
NAWQA Program’s study on the effects of urbanization on stream
ecosystem (Couch and Hamilton, 2002). This study included 9
metropolitan regions in the continental US (Atlanta, GA [ATL];
Birmingham, AL [BIR]; Boston, MA  [BOS]; Dallas-Fortworth, TX
[DFW]; Denver, CO [DEN]; Milwaukee-Green Bay, WI  [MGB]; Port-
land, OR [POR]; Raleigh, NC [RAL]; Salt Lake City, UT [SLC]) that
represent a wide range of climate and geological conditions. Study
watersheds in each region were selected along an urbanization gra-
dient defined by a multimetric urban intensity index (Brown et al.,
2009; Cuffney et al., 2010). However, for this study, the fraction of
impervious surface is used as a measure of urban disturbance to
facilitate comparisons with other urban studies. EPT taxa richness
is used as a measure of ecological response.

4. Results

4.1. Exploratory data analysis

Scatter  plots of EPTr against % impervious surface show a strong
nonlinear decreasing pattern (Fig. 1). In addition, the variation of
EPTr tends to decrease as % impervious surface increases. These
scatter plots show a typical “wedge” shaped data cloud that is a
common feature in many ecological data sets (Paul et al., 2009;
Carter and Fend, 2005). The wedge shape is characteristic of count
data because the variance of a count variable is usually proportional

to  its mean. This feature can also be interpreted from an ecological
perspective, as a change in the influence of urban and non-urban
variables that affect EPTr across the urbanization gradient. The vari-
ation of EPTr is high at low end of the urbanization continuum
where a variety of other factors (e.g., background land cover con-
dition) are more important than urbanization. Near the high end
of the urbanization spectrum, the effect of urban development on
EPTr dominates all other factors. These scatter plots also show that
the predictor variable (% impervious surface) distribution is skewed
to the left—more watersheds are clustered around the lower end of
the urbanization continuum. This distribution reflects the difficulty
in finding streams in areas with high imperviousness that met  the
criteria for inclusion in these studies: flowing above ground and
connected to the riparian areas (e.g., no concrete lined channels). A
highly skewed predictor may  lead to a model that is unduly influ-
enced by data points with large predictor variable values. The logit
transformed % impervious surface is close to normality. As a result,
we will present models with both transformed and untransformed
predictors.

4.2. Threshold models and their fit to data

4.2.1. Untransformed predictor
The  three threshold models (Eqs. 4 - 6) were fit to the data for

each of the nine metropolitan areas. For each metropolitan area, the
estimated posterior distributions of the threshold from the three
models are compared (Fig. 2). The threshold posterior distribu-
tion is an important part of the model diagnostics (as illustrated
in the online supplementary materials). A widespread (DFW, step)
or a U- (BOS, hockey stick), L- (BOS, step), or J-shaped (BOS, gen-
eral) posterior distribution suggests that either a threshold does
not exist or a wrong model was  used. These distributions are not
indicative of a strong threshold because they allocate the posterior
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Fig. 3. Fitted change point models (general, hockey, and step function) are superimposed on the observed data and compared with the generalized linear model. The y-axis
is  EPTr (in logarithmic scale) and the x-axis is % impervious surface. Rows represent metropolitan areas (labeled). Columns represent models (left to right: general model,
hockey stick model, step function model, and simple linear model).

change point mass at one (L-, or J-shaped) or both (U-shaped) ends
of the gradient or uniformly across the gradient (widespread). A
concentrated threshold distribution (e.g., RAL, step) often suggests
the existence of a threshold, but additional evidence must be eval-
uated before the existence of a threshold can be confirmed (e.g.,

the  posterior change point distribution estimated using the general
model). Although the posterior distributions using the step func-
tion model show consistent concentrated peaks (8 of the 9 regions),
locations of these peaks (i.e., the estimated change points) rarely
coincide with the change points estimated using the general model
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Fig. 4. Deviance information criterion (DIC) for the four competing models (top row, untransformed predictor; bottom row, logit transformed predictor).

(Table 1). The most effective means for checking a model’s fit is the
residual plot when the response variable is normally distributed.
However, the residual distribution is not specified for a generalized
linear model. For this reason, model fit was evaluated by comparing
model predictions and the observations by superimposing model
predicted inter-quartile range on the data plots (Fig. 3). The y-axes
of plots in Fig. 3 (and in Fig. 6) are in the logarithmic scale as the

Poisson  model predicts the log-mean EPTr. In the MCMC  simula-
tion, the posterior model is characterized by the joint distribution
of model coefficients represented by many sets (2500 in this anal-
ysis) of random samples of model coefficients drawn from the joint
posterior distribution. Each set of random samples defines a pos-
sible model, and each possible model is used to make predictions
of the mean EPTr along the urban gradient. Consequently, for each
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predictor variable (% impervious surface) value, there are 2500 pre-
dictions. The shaded polygons in Fig. 3 are the middle 95% range of
the predicted means and the solid line is the median of these 2500
predictions.

Fig. 2 suggests that thresholds may exist for some metropoli-
tan areas (e.g., step function models for BIR and RAL) and that the
threshold value varies from region to region. Although all three
models resulted in a median line going through the middle of the
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data cloud (Fig. 3), interpretation of the resulting models can be
challenging. For example, what would be the ecological explana-
tion for the sudden increase in EPTr at ca. 30% impervious surface
as indicated by the general model for POR? Visual assessment of
the fit of the three threshold models and the generalized linear
model offers no consensus on the appropriate model forms. Nei-
ther does the commonly used deviance information criterion (DIC)
(Fig. 4) (Spiegelhalter et al., 2002; Qian et al., 2005). Consequently,
we must be open to alternative, perhaps nonlinear, models.

4.2.2.  Transformed predictor
The logit transformation implies a proportional relationship

between the ratio of impervious over pervious surface and the
mean EPTr. The slope (ˇ1 in Eq. (3)) is the proportional constant,
that is, for every 1% increase in the ratio, we expect ˇ1% change in
� (the mean value of EPTr) (see Qian, 2010, pp. 255–257).

The estimated threshold posterior distributions after logit
transforming the predictor (Fig. 5) are quite different from the
distributions without the transformation (Fig. 2), although the
estimated modes did not change dramatically because the depar-
ture from the linear model without the transformation is not very
strong. The step function model indicates a potential threshold
in most (8) of the metropolitan areas while the hockey stick and
general models show a much lower number (1 or 2) of possible
thresholds. However, comparison of the fitted models with the
data does not support the thresholds identified by the step func-
tion models and suggests that a generalized linear model (with a
logit transformation of the % impervious surface) would be suf-
ficient (Fig. 6) for describing the EPTr response to urbanization.
This generalized model implies a log–log linear relation between
the mean EPTr and the ratio of impervious surface over pervious
surface. That is, for every unit (1%) increase in the ratio, a fixed per-
centage decrease in EPTr mean is expected. This simple model fits
the data well (Fig. 6, right column), providing evidence against the
existence of a threshold.

5.  Conclusions and discussion

This  study revealed characteristics of the commonly used sta-
tistical change point methods that have important implications not
only for detecting ecological thresholds, but more generally for eco-
logical data analysis and modeling. Statistical inference is a form of
hypothetical deduction. The quote that “all models are wrong” (Box,
1976) implies that models are only “correct” when the underlying
assumptions about the data are correct. In other words, statistical
inference is conditional on the proposed model. Verifying a model
is often difficult because the estimated model is an optimal fit to
the data. When alternative models are proposed, potential weak-
ness of each candidate model can be identified. Whether a model is
adequate or not must be carefully assessed before identifying and
interpreting change points. Evaluating multiple alternative mod-
els is critical to finding a model that is appropriate for the data.
We advocate evaluating multiple alternative models in the spirit of
T.C. Chamberlin, who advocated the comparison of multiple work-
ing hypotheses as a means of developing rational explanations of
new phenomena (Chamberlin, 1890).

In a threshold modeling problem, the multiple model approach
is especially important because the three alternative threshold
models can often produce a change point even when a threshold
does not exist. This problem can be attributed either to random
sampling error, unaccounted for confounding factors, and/or the
use of an inappropriate model. For example, the step function
model will always detect a distinct threshold as long as the under-
lying function is monotonic. Consequently, when the step function
model and its variations are used, users must carefully evaluate
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Fig. 7. The fitted GLM (solid line) is compared to the observed data from BOS.

their results against alternative models to avoid misleading results.
Furthermore, Chiu et al. (2006) suggest that statistical evidence is
often unavailable for distinguishing a hockey stick model from its
gradual change counterpart without auxiliary information. The best
approach for justifying the use of a specific model is still Chamber-
lin’s method of multiple working hypotheses, where the intended
model is one of many alternative models. Only by comparing among
multiple alternative models with the original data can the appropri-
ate model and method of threshold detection be determined with
a reasonable certainty. In the urbanization example, data support
the generalized linear model more than the threshold models. This
result is also supported by many ecological studies summarized in
Groffman et al. (2006). Our results would have been much differ-
ent if we  had considered only a single model (e.g., the step function
model). The generalized linear model with logit transformation of
the % impervious surface as the predictor captures the variation
in the data well. Based on this model, we  expect a fixed fractional
change in mean EPTr for every 1% change in the ratio of impervious
surface over pervious surface. A 1% change in the ratio can mean a
very small or large change in the impervious surface depending on
where on the gradient of imperviousness the change is occurring.
For example, near the low end of the urban gradient a 1% increase
in the ratio can be the result of a small increase in the impervious
surface area, but as we  move up the urbanization gradient, the same
1% change in the ratio represents an increasingly larger change in
impervious surface area. In other words, a small increase in imper-
vious surface in a watershed with no or very little development
will lead to the same fractional change in EPTr as a large increase in
a watershed that already has significant urban development. Near
the high end of the urban gradient, because the EPTr values tend
to be very low, even though a small percentage change in imper-
vious surface (e.g., from 98% to 99%) would lead to a large change
in the logit transformed predictor (from 3.89 to 4.59), the relative
amount of decreasing in EPTr is actually very small. (For example,
using the BOS model log (�) = 0.82 − 0.65logit(x), a change of 1% in
impervious surface from 1% to 2% leads to a change in � from 45 to
28.5, while the same 1% change from 98% to 99% leads to a change
in � from 0.18 to 0.11.) This model explains the pattern in the data
(rapid changes near the low end of the urban gradient and very slow
change near the high end of the urban gradient) very well (Fig. 7),
even extrapolating outside the data range.

Another important question in threshold analysis is how we
apply various statistical models to management problems. The
term “threshold” has different meanings when used in different
contexts and often conveys a sense of urgency and a need for
action when used in a management context. In fitting a statisti-
cal model, the term threshold is more accurately described as the
change point, that is, the point at which model coefficients change.
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Fig. 8. An hypothetical hockey stick model (thick solid line segments) illustrates
the  difference between a mathematical change point and management threshold.
A  management threshold should ensure, with a certain degree of confidence, that
the value of the desired endpoint will be preserved. The two  dashed lines are two
hypothetical desired endpoints (Ym1, Ym2) and their respective thresholds (Xm1, Xm2).
A  mathematical change point (Xcp) is the predictor variable value at which model
coefficients changed.

In a management problem, however, the concept of a threshold
response should be discussed in the context of the management
endpoint, i.e., the desired outcome. For example, suppose that we
want to maintain an EPTr of at least 10, the question now becomes
what is the maximum level of impervious surface that can occur
in the watershed while keeping EPTr ≥ 10. The statistical change
point and the ecological threshold can be the same if the response
of EPTr to urbanization can be approximated by the step function
if the lower and higher values span the management endpoint
for the response. However, the change point can differ from the
ecological threshold if the underlying model is something other
than the step function. For example, if the underlying model is a
hockey stick model (Fig. 8), the mathematical change point should
not be confused with the management threshold. In this exam-
ple, the statistical change point (Xcp) would not be protective if
the management threshold was Ym1 and would be overly protec-
tive if the management threshold was Ym2. In other words, users
of these models should have a clear understanding of the manage-
ment objective in order to correctly interpret the significance of the
change point relative to management thresholds.

Acknowledgement

The author thanks Roxalana Kashuba, Ibrahim Alameddine,
and Gerald McMahon for their insightful discussions and com-
ments. Craig Stow, Brian Cade, and Travis Schmidt reviewed an
early version of the manuscript and provided valuable comments

and  suggestions. Comments and suggestions from two anonymous
reviewers and the editor are greatly appreciated. The research was
completed while SSQ was  supported by the USGS through a USGS-
Duke University corporative agreement (08HQAG0121).

Appendix A. Supplementary Data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ecolind.2011.08.019.

References

Barbour, M.T., Gerritsen, J., Snyder, B.D., Stribling, J.B., 1999. Rapid Bioassessment
Protocols  for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroin-
vertebrates  and Fish, 2nd edition, EPA 841-B-99/002. Technical Report, US
Environmental  Protection Agency; Office of Water; Washington, DC, 1999.

Box, G.E.P., 1976. Science and statistics. Journal of the American Statistical Associa-
tion  71 (356), 791–799.

Brown,  L.R., Cuffney, T.F., Coles, J.F., Fitzpatrick, F., McMahon, G., Steuer, J., Bell, A.H.,
May, J.T., 2009. Urban streams across the USA: lessons learned from studies in 9
metropolitan areas. Journal of the North American Benthological Society 28 (4),
1051–1069.

Carter, J.L., Fend, S.V., 2005. Setting limits: the development and use of factor-ceiling
distributions  for an urban assessment using macroinvertebrates. In: Brown, L.R.,
Gray, R.H., Hughes, R.M., Meador, M.R. (Eds.), Effects of Urbanization on Stream
Ecosystems,  Bethesda, Maryland. , pp. 179–191 (American Fisheries Society
Symposium  47).

Chamberlin, T.C., 1890. The method of multiple working hypotheses. Science 15, 92
(old series).

Chiu, G., Lockhart, R., Routledge, R., 2006. Bent-cable regression theory and applica-
tions. Journal of the American Statistical Association 101 (474), 542–553.

Couch, C.A., Hamilton, P.A., 2002. Effects of Urbanization on Stream Ecosystems.
Technical  Report, US Geological Survey Fact Sheet 042-02.

Cuffney,  T.F., Brightbill, R.A., May, J.T., Waite, I.R., 2010. Responses of benthic
macroinvertebrates to environmental changes associated with urbanization in
nine metropolitan areas. Ecological Applications 20 (5), 1384–1401.

Fisher,  R.A., 1922. On the mathematical foundations of theoretical statistics. Philo-
sophical Transactions of the Royal Society of London, Series A 222, 309–368.

Groffman, P.M., Baron, J.S., Blett, T., Gold, A.J., Goodman, I., Gunderson, L.H., Levinson,
B.M., Palmer, M.A., Paerl, H.W., Peterson, G.D., Poff, N.L., Rejeski, D.W., Reynolds,
J.F.,  Turner, M.G., Weathers, K.G., Wiens, J., 2006. Ecological thresholds: the
key  to successful environmental management or an important concept with
no practical application? Ecosystems 9, 1–13.

Muggeo, V.M.R., 2003. Estimating regression models with unknown break-points.
Statistics  in Medicine 22 (19), 3055–3071.

NCDENR, 2006. Standard Operating Procedures for Benthic Macroinvertebrates.
Technical  Report, Biological Assessment Unit, North Carolina Department of
Environmental and Natural Resources, Raleigh, North Carolina.

Paul,  M.J., Bressler, D.W., Purcell, A.H., Barour, M.T., Rankin, E.T., Resh, V.H., 2009.
Assessment  tools for urban catchments: defining observable biological poten-
tial.  Journal of the American Water Resources Association 45, 320–330.

Qian, S.S., 2010. Environmental and Ecological Statistics with R. Chapman and
Hall/CRC Press.

Qian,  S.S., King, R.S., Richardson, C.J., 2003. Two  statistical methods for the detection
of environmental thresholds. Ecological Modelling 166, 87–97.

Qian,  S.S., Reckhow, K.H., Zhai, J., McMahon, G., 2005. Nonlinear regression modeling
of nutrient loads in streams: a Bayesian approach. Water Resources Research 41,
W07012.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A., 2002. Bayesian measures
of  model complexity and fit. Journal of Royal Statistical Society (B) 64, 583–639.


	undefined: 
	19 2012 15 Ecological Indicators: 
	journal homepage wwwelseviercomlocateecolind: 
	USA 27607 Sunset Ridge Road Raleigh NC 3916 US Geological Survey b: 
	a r t i c l e: 
	2011 August 12 Accepted: 
	undefined_2: 
	a b s t r a c t: 
	Elsevier Ltd All rights reserved 2011: 
	Glenwood 5400 Corresponding author Present address Cardno ENTRIX Inc *: 


